The transmitter frequency is stabilised using a 976-kHz ceramic resonator taken from a TV remote control unit. Fine tuning is provided by the trimmer capacitor. If there’s another station in the background, which will probably be weak, you can tune it to a heterodyne null, such as 981 kHz. As an operator of a medium-wave transmitter, that’s your obligation with respect to the frequency allocations. And that’s despite the fact that the range of the transmitter is quite modest. The small ferrite coil in the transmitter couples directly into the ferrite rod antenna in the radio.
Medium-Wave Modulator Circuit Diagram
The modulator is designed as an emitter follower that modulates the supply voltage of the output amplifier. As the medium-wave band is still mono, the two input channels are merged. The potentiometer can be adjusted to obtain the least distortion and the best sound. The RF amplifier stage has intentionally been kept modest to prevent any undesired radiation. The quality of the output signal can also be checked using an oscilloscope. Clean amplitude modulation should be clearly visible.
The medium-wave modulator can simply be placed on top of the radio. A signal from a CD player or other source can be fed in via a cable. Now you have a new, strong station on the radio in the medium-wave band, which is distinguished by good sound quality and the fact that it always plays what you want to hear.
Author: Burkhard Kainka - Copyright: Elektor










This feedback causes a hysteresis of 20mV that prevents oscillation when the input voltage changes slowly. IC1d is an ordinary inverter. For input voltages above 10mV, the SIGN output terminal will swing to almost the positive supply. When the input voltage is below –10mV, the SIGN terminal drops low, almost to the negative supply voltage. For input voltages between these two thresholds, the output voltage is well defined, too, because it stays at its previous level. This circuit is the perfect complement to the ‘+/– voltage on bargraph display’ circuit discussed elsewhere in this blog.




























